ENE-303: Wastewater Collection and Treatment

CREDIT HOURS:	Theory	= 3	Practical	= 1	Total	= 4
CONTACT HOURS:	Theory	= 48	Practical	= 48	Total	= 96
PREREQUISITE:	Introduction to Environmental Engineering					
MODE OF TEACHING:	Three hours of lecture and three hours lab per week $(75+25)$ %					

COURSE DESCRIPTION:

To understand wastewater collection systems in terms of design, operation, and maintenance; to introduce principles of pumping stations, infiltration, force mains, gravity sewers, invert levels, lift stations, manholes, etc.; to understand fundamentals of treating municipal wastewater and overview of design concepts and processes; to review the biological treatment processes and design concepts.

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

- 1 Engineering Knowledge:
- 2 Problem Analysis:
- 3 Design/Development of Solutions:
- 4 Investigation:
- 5 Modern Tool Usage:
- 6 The Engineer and Society:
- ☑ 7 Environment and Sustainability: \checkmark 8 Ethics: \square \checkmark 9 Individual and Teamwork: \square 10 Communication: \square \checkmark 11 Project Management: \square 12 Lifelong Learning: \square

COURSE LEARNING OUTCOMES (CLOs):

Upon successful completion of the course, the student will demonstrate competency by being able to:

S. No	CLOs	Domain	Taxonomy Level	PLOs
1	UNDERSTAND fundamentals of wastewat generation and collection	Cognitive	2	1
2	ANALYZE wastewater treatment unit operations and processes.	Cognitive	4	2
3	EVALUATE wastewater treatment plant design.	Cognitive	5	3
4	FOLLOWS procedures for wastewater treatment unit design, operation, and performance evaluation	Psychomotor	3	5
5	Maintain ethical conduct in lab and adhere to lab safety procedures while	Affective	5	8

contributing effectively towards individua		
and/ or group goals.		

Complex Engineering Problem

6	Apply biological techniques for wastewater treatment.	Cognitive	3	2
---	---	-----------	---	---

TOPICS COVERED WITH THEIR CONTRIBUTION TO PLOS:

Theory:

Week	Торіс		
1	Wastewater generation and impurities		
2	Wastewater collection components		
3	Appurtenances and structures		
4	Design of wastewater collection systems		
5	Basic process design parameters		
6	Decentralized Wastewater Treatment System (DWTS)		
7	Waste Stabilization Ponds		
8	Aerobic treatment of wastewater		
Mid Semester Exam			
9	Suspended growth process		
10-11	Design of Activated Sludge Process		
12	Attach growth process		
13	Design of Trickling Filters		
14-15	Anaerobic Biological Treatment Processes		
16	Sludge Treatment and Handling		
End Semester Exam			

Practical:

S. No.	Title
1	Determination of Dissolved Oxygen and Biochemical Oxygen Demand
2	Determination of Chemical Oxygen Demand
3	Determination of Total Organic Carbon
4	Determination of Orthophosphates and Total Phosphorus
5	Determination of Nitrite and Nitrate Nitrogen
6	Determination of Ammonia and Kjeldahl Nitrogen
7	Determination of Heavy Metals in wastewater
8	Determination of Sludge Volume Index
9	Determination of Volatile Fatty Acids for anaerobic treatment processes
10	Introduction to GPS-X and its applications in Wastewater treatment

TEXT AND MATERIAL:

Textbook(s)

- "Theory and Practice of Water and Wastewater Treatment", Ronald L. Droste (1996)

References Material:

- "Wastewater Engineering, Treatment and Resource Recovery", 5th Edition by Metcalf & Eddy (2013)

- "Biological Wastewater Treatment", Third Edition 3rd Edition by C. P. Leslie Grady Jr (2011)

ASSESSMENT SYSTEM:

Theoretical/Instruction	75%
Assignments	10%
Quizzes	15%
Mid Semester Exam	25%
End Semester Exam	50%
Practical Work	25%
Lab Report	40%
Lab Quiz	30%
Lab Rubrics	30%